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LETIER TO THE EDITOR 
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Received 27 October 1981 

Abstract. The exact surface tension for all angles and temperatures is given for the 
two-dimensional square Ising system with anisotropic nearest-neighbour interactions. 
Using this in the Wulff construction, droplet shapes are computed and illustrated. Letting 
temperature approach zero allows explicit study of the roughening transition in this model. 
We also compare our results with those of the solid-on-solid approximation. 

1. Introduction 

Recently the roughening transition associated with the disappearance of a sharply 
defined orientation of an interface has received increasing interest. It has been 
recognised that this phase transition may influence crystal morphology as well as the 
process of crystal growth (Leamy et a1 1975). Furthermore, it has been discovered that 
the roughening transition has close connections to phase transitions in other two- 
dimensional models, e.g. the XY model (Jose et a1 1977, Knops 1977), the Coulomb 
gas (Chui and Weeks 1976) and the sine-Gordon model (Muller-Krumbhaar 1977), as 
well as in lattice gauge theories. 

Experimentally, the roughening transition is not yet well established. It is 
apparently difficult to find interfaces having a roughening transition within an admis- 
sible parameter range. Moreover, for most crystals, surface equilibrium phenomena 
are greatly affected by tiny deviations from equilibrium in the bulk. The first experi- 
ments in which a sudden transition from flat to rounded interfaces at a fairly sharply 
defined temperature was seen, were performed by Pavlovska and Nenov (197 la, b, 
1977) on negative crystals in naphthalene and diphenyl. Recently similar observations 
on interfaces between solid and supefiuid helium, a system for which extremely good 
conditions of purity and equilibration can be obtained, were reported by Avron et a1 
(1980). 

t Work supported in part by US NSF Grant MCS 78-01885 and US-Israel BSF grant No. 1573. 
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In computer experiments on solid-on-solid models the exiotonce of a roughening 
transition has been shown fairly convincingly; moreover, for certain of these models the 
existence of a roughening transition could be shown rigorously (van Beijeren 1977) or 
at least beyond reasonable doubt (Chui and Weeks 1976). The problem with the real 
experiments, however, is ambiguity in the interpretation of the h r v e d  phenomena as 
a roughening transition. One question is whether one should expect to see a sudden 
change of crystal shape at a roughening transition or instead a gradual transition from a 
perfectly faceted shape to a slightly rounded form. Moreover, the roughening tran- 
sition is expected to be markedly affected by gravity and as yet there is no theory which 
incorporates gravity. It may turn out that the above two difficuities are, in fact, related. 

To address this question we consider the equilibrium shape of a 'droplet' in the 
two-dimensional Ising model with ferromagnetic nearest-neighbour interactions. For 
the isotropic case (equal coupling constants in both directions) Abraham and Reed 
(1977) calculated the interface free energy per unit length (the surface tension) as a 
function of the direction of the interface. From this, the shape of the interface can be 
obtained directly by means of the Wulff construction. In this note we extend this result 
to the general anisotropic case and formulate it in more explicit form. We also provide 
computer plots of the equilibrium shape which show that at low temperatures it is nearly 
square or rectangular (the equilibrium shape at T = 0) even though the interface is 
'rough' for all T > 0. For low temperatures we make a comparison between the exact 
results and those of the solid-on-solid approximation obtained by Burton el a1 ( 195 1 ). 
The latter results, which can be obtained very simply, turn out to be accurate to order 
exp(-const/ T ) .  

In passing, we note the equivalence for the two-dimensional Ising model of the 
common definitions of the roughening transition, namely (i) the temperature above 
which the interface is not localised so that its 'width' A diverges in the thermodynamic 
limit, and (ii) the temperature above which the free energy of a 'step' in the interface 
vanishes in the thermodynamic limit+. Intuitively the equivalence of these two 
definitions is rather clear: If the formation of a step in the interface requires no free 
energy, the interface will in general contain a large number of steps, which will 
delocalise its precise position in the orthogonal direction. Furthermore, the vanishing 
of the step free energy implies that the discontinuity in the derivative of the interface 
free energy with respect to its direction vanishes for the direction under consideration. 
This means that the Wulff plot has no 'kink' for this direction, hence the interface has no 
facets orthogonal to it. Another point of some importance is that although the 
interfacial width A 'diverges' for T > TR, it is meaningful to speak of an equilibrium 
shape of a droplet. It is known that A diverges with L, the size of the system. Within 
capillary wave theories 

A / L K L  I d  " I 2  d < 3  ( 1 )  

for a ( d  - 1)-dimensional interface embedded in a ddimenoional bulk system. In two 
dimensions, explicit calculations of Abraham and Reed (1977) vindicate (1) and give 
the temperature-dependent constant of proportionality. Thus on a scale of L' /*  the 
width has finite thermodynamic limit and for a droplet of size L the shape is well 
defined. Therefore it is meaningful to speak of the average shape of a droplet for all 
T < T,, where T, is the critical temperature. 
t The free energy of a step in an interface, orthogonal say to the y direction, can be defined as the difference in 
free energy between an interface for which the y coordinates of the end points differ by one lattice unit and an 
interface for which the end points have the same y coordinates. 
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2. Equilibrium shape of a droplet 

The equilibrium shape of a ‘droplet’ of negative magnetisation in an environment of 
positive magnetisation is obtained by applying the Wulff construction (see Hemng 
1975). To be specific, let a ( h )  denote the free energy per unit length of an interface 
orthogonal to h. Construct a line normal to n  ̂ at a distance a($) from the origin. Do this 
for all h. Then the inner envelope of all lines drawn defines the equilibrium shape of the 
droplet. 

For the two-dimensional Ising model with ferromagnetic nearest-neighbour coup- 
lings J, and Jy the function a(6) = a(4) (where 4 is the angle between n̂  and the y axis) 
may be obtained from the duality relation (Fisher 1969, Watson 1972, Zia 1978) 

P6*(4)44) = 1 

where e* is the correlation length in the direction orthogonal to n  ̂ (i.e. along the 
interface) in the dual system. The latter may be extracted from the asymptotic 
behaviour of the correlation function of a spin at the origin (0,O) of the lattice and 
another at (M cos (6, M sin 4) :  

(2) 1/6*((6) = lim (-l/M) ln(S(O,O)S(M cos 4, M sin (6)). 
M-LV 

Asymptotic forms of (SS) have been computed exactly (Cheng and Wu 1967, see also 
McCoy and Wu 1973) so that explicitly, 

(3) pa(4) = a1 sin 4 +a2 cos 4 

p cosh a1 = [ (a2-q2) sin2 4 + p 2  cos2 4]/[a sin2 (6 +b]  

where 

(34  
q cosha2=[ (a2-p2)cos24+q2s in24] / [a  cos24+b]- (3ii) 

b ={($a sin 24)’+cos 24[p2 cos2 4 -q2 sin2 4])”2 
a =(1+x2)(1+y2) p = 2x (1 - y 2, q=2y(1-x2) (4) 

and 

x = exp(-2PJx) y = exp(-2PJy). 

In the isotropic case (J, = J , )  these results agree with those of Abraham and Reed 
(1977). 

From these equations we solved numerically for the equilibrium shape of the 
droplet, with the following results: 

(a) At T = 0 the Wulff plot a((6) consists of the outer envelope of four intersecting 
ellipses centred at (x, y )  = (*Jx, fJy) and is given by 

( 5 )  

There are four kinks located at (6 = 0, w, *$T and the equilibrium shape is a rectangle. 
The  anisotropic shape is obtained from the isotropic one by capillary wave scaling 

(b) For 0 < T < T, the Wulff plot a(4) has no kinks, so there are no facets on the 
equilibrium droplet. This establishes that Tg, the roughening temperature defined 
according to the second definition given above, equals zero for all directions, and it 
confirms the equivalence of T i  and TZ for this case. (The result Ti = 0 is known from 

a(4) = 2[Jy Jcos (6 I +J,  Jsin (6 I]. 

x + J;’x, y + J; l y .  
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Gallavotti (1972). Abraham and Reed (1974, 1976) and Aizcnmnnn (1980).) 
Furthermore, the equilibrium shape of the droplet is everywhere smooth (has no sharp 
angles) for 0 < T < T,. This is intuitively appealing; the interface is a oneaimensional 
structure with short-ranged interactions for which one would not expect any non- 
analytic behaviour except at T = 0. However, a general proof that no sharp angles can 
occu is not known to us. 

(c) In figure 1 the equilibrium shape of the droplet is shown in the isotropic case 
(J ,  = J y )  for a number of temperatures. One sees that at a temperature of 0.1 T, the 
equilibrium shape is already nearly square. This is in agreement with earlier results of 
Minlos and Sinai (1967,1968), who proved that at very low ttraperrrtures the deviations 
from a square shape in the isotropic case are minor. 

F(pn 1. Equilibrium shapes for isotropic couplings at T/T,= 0.1, 0.2, 0.3. 0.4 and 0.5. 
with the larger figures being lower temperatures. 

(d) As T - 0  the curvature d2u/d4' diverges exponentially at the kink sites 
4 = 0, T,  *;T,  e.g., like kT exp(2BJ,) for 4 = ST. 

In figure 2, we provide plots of both U and the equilibrium shape in one quadrant for 
some typical temperatures. The behaviour of the equilibrium shape at general 
temperatures is also interesting; it turns out for instance that the anisotropic case can no 
longer be mapped onto the isotropic case by capillary wave scaling, or even, if one looks 
precisely, by any other scaling. This will be treated however in a separate paper (Zia 
and Avron, in preparation). 

This approximation treats the phase boundary as a contour between areas of positive 
and negative magnetisation that when followed from one end to the other is only 
allowed to move in three! of the four poeoibk directions. The i n t e "  between this 
contour and the spins in the bulk are neglected, which implies that the proboWty for a 
given contour to occur is proportional to its Baltzmann weight eq~(-@E,)  with 
E, = 2J,.Nh + 2JxNV; Nb is the total length of horizontal line pieces " w e d  in lattice 
units in the contour and N ,  the total length of vertical line pieces. The free energy per 
unit length, under the constraint that the average angle of the interface with the y 
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Figure 2. The full curve gives equilibrium shapes and the broken curve surface tension for 
T/T,=O.l,  0.3 and 0.5 

direction equals 4, is found as (Burton et a1 195 1) 

00 

usos=f(r$) = -kTlcos 4 )  In[ exp(-2pJy) 1 exp(-2pln,IJx) exp(hn,)] (6) 

with a Lagrange multiplier h to be determined from (n,) = tan 4. The explicit solution 
of this problem is straightforward. It was first given by Burton et a1 (1951) and reads 

ny = --a5 

+ [sin 4 I log $(1+ E + R lcot 4 I)] (7) 

where E = exp(-4pJx), R = {tan’ 4(1- E)’ + 4 ~ } ” *  and we have chosen the parameters 
of this system to fit the couplings Jx, J ,  of the Ising model. The accuracy of the SOS 
approximation can be checked by comparing f (4)  with ( ~ ( 4 ) .  Though tedious, the 
computations are straightforward. They lead to the well known result (Temperley 
1952) f (0 )  = a(0) for all T < T,. For 4 # 0, a(4) # f ( d ) ;  but for low temperatures the 
SOS approximation turns out to be extremely good for 14 I d h. For larger angles it 
makes more sense to use the SOS approximation in the orthogonal direction, although 
one introduces small spurious kinks in the Wulff plot by this procedure. The difference 
f (4)  - a(4) is O( T exp(-4JY/kT)) for small T, and hence approaches 0 very rapidly as 
T tends to zero. In the isotropic case and for 4 = b, f approximates a within 1% up to 
T = 0.5 T,. It is noteworthy in this context that the main two contributions to f (4)  can 
be recognised as zero-point-energy (the first two terms in (7)) and (-T) times zero- 
point-entropy (the third term in (7)). The remaining contributions are of order TE for 
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# 0, but are essential for cancelling the kink in the Wulff plot at C#J = 0 that would 

At higher temperatures, especially near T,, the SOS approximation is in general no 

Further results will be published elsewhere (Zia and Avron, in preparation). 
Finally, we want to mention that we received a preprint by C Rottman and M Wortis 

result from the lirst three terms alone. 

longer very good. 

(1981) on the same subject after finishing this Letter. 

We wish to acknowledge useful discussions with K Binder, M E Fisher and J Slawny. 
We are grateful to A Dekel for help with computers. 
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